
Inducing Sequentiality Using Grammatical
Genetic Codes

Kei Ohnishi, Kumara Sastry, Ying-Ping Chen, and David E. Goldberg

Illinois Genetic Algorithms Laboratory (IlliGAL)
University of Illinois at Urbana-Champaign

104 S. Mathews Ave, Urbana, IL 61801, USA
{kei,kumara,ypchen,deg}@illigal.ge.uiuc.edu

Abstract. This paper studies the inducement of sequentiality in ge-
netic algorithms (GAs) for uniformly-scaled problems. Sequentiality is
a phenomenon in which sub-solutions converge sequentially in time in
contrast to uniform convergence observed for uniformly-scaled problems.
This study uses three different grammatical genetic codes to induce se-
quentiality. Genotypic genes in the grammatical codes are interpreted as
phenotypes according to the grammar, and the grammar induces sequen-
tial interactions among phenotypic genes. The experimental results show
that the grammatical codes can indeed induce sequentiality, but the GAs
using them need exponential population sizes for a reliable search.

1 Introduction

Identification and exchange of important building blocks (BBs) is one of the key
challenges in the design of genetic algorithms (GAs). Fixed recombination ope-
rators that do not adapt linkage of BBs have been shown to be inadequate and
scale-up exponentially with the problem size [1]. Furthermore, GAs that adapti-
vely identify and efficiently exchange BBs successfully solve boundedly difficult
problems, usually requiring only polynomial number of function evaluations [2].
GAs that identify and exchange BBs and thereby solve difficult problems quickly,
reliably, and accurately are called competent GAs [3].

One of the approaches to achieve competence is by means of linkage lear-
ning GA (LLGA) [4]. The LLGA takes the position that tightly linked BBs
are evolutionally advantageous. The LLGA is designed to achieve tight linkage
between interacting variables. While the LLGA has been successful in solving
non-uniformly scaled problems, it can only solve uniformly scaled problems of
limited size [5,6]. In non-uniformly-scaled problems, since a selection operator
identifies BBs sequentially, it helps the LLGA achieve tight linkage. However, in
uniformly-scaled problems, a selection operator identifies BBs simultaneously.
Therefore, it is difficult for the LLGA to achieve tight linkage for all BBs in
parallel [7].

Recently, a genetic algorithm using grammatical evolution (GAuGE) [8,9],
which was inspired by grammatical evolution [10,11], has been proposed to solve
problems through a process of getting salient phenotypic genes clustered in a

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1426–1437, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Inducing Sequentiality Using Grammatical Genetic Codes 1427

genotypic chromosome. The GAuGE relies on a grammatical genetic code in
which genes are in a certain order interpreted according to the grammar, and the
grammar induces sequential interactions among phenotypic genes corresponding
to their determined order. In addition, the grammatical genetic code allows
phenotypic genes to locate at any positions in a genotypic chromosome. If salient
phenotypic genes get clustered on a specific part of a genotypic chromosome, they
can be kept from their disruption due to a specific crossover operator as well as
grammatical decoding.

We hypothesized that sequential interactions among phenotypic genes in-
duced by grammar could induce prioritized phenotypic convergence for search
problems including uniformly-scaled problems. Therefore, the objective of this
paper is to investigate whether or not sequentiality can be induced in uniformly-
scaled problem using grammatical genetic codes. Sequentiality is a phenomenon
in which sub-solutions converge sequentially in time. The grammatical genetic
codes used in this paper are based on similar principal as in the GAuGE.

This paper is organized as follows. Section 2 briefly describes studies on
grammatical genetic codes and sequentiality. In section 3, three grammatical
genetic codes used in this paper are explained. We empirically examine if GAs
using the grammatical codes can induce sequentiality in section 4. Finally, we
summarize our results and draw our conclusions.

2 Related Studies

Representation of the variables of a search problem play an important role in
genetic and evolutionary search, and effects of a variety of genetic codes on
the performance of GAs have been extensively studied. An exhaustive review
of studies on genetic representations is beyond the scope of this paper and the
reader is referred elsewhere [12,13,14] and to the references therein.

One of the motivations for this study came from [15,16], in which GAs with
seemingly disruptive and highly epistatic genetic codes were successful in sol-
ving difficult combinatorial problems. Some researchers have also used grammar-
based genetic codes, which are also highly epistatic, with reasonable GA success
[17,8]. In [17], the genes encode production rules, which are in turn used in a
fixed manner to generate a structured phenotype.

The grammar-based genetic code used in the GAuGE [8,9] allows phenoty-
pic genes to locate at any positions in a genotype chromosome similar to the
representation used by Goldberg and Lingle [18] and the representations used in
messy GAs [14] and the LLGA [4]. The grammar in GAuGE also induces sequen-
tial interactions among phenotypic loci, which is determined by the genotype-to-
phenotype decoding procedure. LINKGAUGE [19], which is a variant of GAuGE
uses grammars that induce sequential interactions not only among phenotypic
alleles, but also among phenotypic loci.

At the first glance, it looks like such highly epistatic genetic codes should
yield poor results. However, based on their empirical success, we wondered if such
genetic codes might be simplifying the search problem by implicitly focusing on

1428 K. Ohnishi et al.

a single or few subproblems at a time. That is, we hypothesized that the genetic
codes with high epistasis might be inducing sequentiality into search problems,
which we investigate in this paper.

3 Grammatical Codes

Since we would like to verify if the strength of sequential interactions among
phenotypic genes is directly related to inducing sequentiality, we employ three
kinds of grammatical genetic codes which induce sequential interactions among
phenotypic genes with different strength. The three codes are : (1) GAuGE code
which is slight variant of [8], (2) complex grammatical code, and (3) cellular
grammatical code. The codes (2) and (3) are meant to induce stronger interac-
tions among phenotypic genes than the GAuGE code.

All the grammatical codes use integers as the genotypic genes, and all the
genotypes are decoded from left to right. The grammatical codes (1) and (2)
determine both the phenotypic loci and their alleles by applying modulus ope-
ration (%) to integers which are obtained in the decoding process. Interactions
among phenotypic genes which are common to all the codes comes from relative
phenotypic loci. All the phenotypic loci are labeled as integers, and they are
relabeled every time one phenotypic locus is occupied. Those grammatical codes
are in detail explained below, where a �-bit optimization problem is assumed.
(1) GAuGE Code (Base 10)

The difference between the original GAuGE code proposed in [8] and the
one used here is that in the original GAuGE, every integer, which is 0 to 255,
is encoded into an eight-bit binary number. Here we directly use a base 10
integer from 1 to �. That is, a GAuGE genotype used here can be written as
(p1, v1, p2, v2, · · · , p�, v�), where pq, vq ∈ [1, �] and q = 1, 2, · · · , �. In this code,
there are sequential interactions only among the phenotypic loci. The decoding
procedure is as follows.

1. Let q be 1.
2. When 1 ≤ q ≤ �, the unoccupied phenotypic loci are labeled as integers in

[1, � − q − 1] from left to right, which is as (1, 2, · · · , �−q−1). The locus and
its allele are determined as pq%(� − q − 1) ∈ [1, � − q − 1], which represents
one of the labels of the unoccupied loci, and vq%2 ∈ {0, 1}, respectively.

3. In the case of q = �, the whole decoding process ends. Otherwise q increases
by one, and return to procedure 2.

(2) Complex Grammatical Code
A genotype in the complex grammatical code consists of � + 1 real and

imaginary parts in complex numbers and � operations applied to two complex
numbers. The genotypic genes are arranged as (r1, i1, o1, · · · , r�, i�, o�, r�+1, i�+1),
where r∗ ∈ [1, 3] represents the real part, i∗ ∈ [1, �] is the imaginary part, and
o∗ ∈ {×, ×t} is the operation. In this code, there are sequential interactions
among both the phenotypic loci and their alleles. This decoding procedure is
described below. Since the decoding is done through � iterations, the iteration
number is denoted by q = 1, 2, · · · , �.

Inducing Sequentiality Using Grammatical Genetic Codes 1429

1. Let q be 1.
2. In the case of q = 1, a new complex number is calculated as R1 + I1j =

(r1 + i1j) × (r2 + i2j) no matter what o1 is, where j is a imaginary number.
A phenotypic locus is obtained as P1 = |I1|%� + 1 ∈ [1, �], which points out
one of the phenotypic loci labeled as 1 to � from left to right. An allele at
the locus is obtained as V1 = |R1|%2 ∈ {0, 1}. If o1 = ×, a new complex
number is defined as rr2 + ii2j = (|R1|%3 + 1) + (|I1|%� + 1)j. If o1 = ×t,
a new complex number is defined as rr2 + ii2j = r2 + i2j.

3. In the case of 2 ≤ q ≤ �, a new complex number is calculated as Rq +
Iqj = (rrq + iiqj) × (rq+1 + iq+1j). A phenotypic locus is obtained as Pq =
|Iq|%(� − q − 1) + 1 ∈ [1, � − q], which points out one of the unoccupied loci
relabeled as 1 to (� − q) from left to right. An allele at the locus is obtained
as Vq = |Rq|%2 ∈ {0, 1}. If oq = ×, a new complex number is defined as
rrq+1 + iiq+1j = (|Rq|%3 + 1) + (|Iq|%� + 1)j. If oq = ×t, a new complex
number is defined as rrq+1 + iiq+1j = rq + iqj.

4. In the case of q = �, the whole decoding process ends. Otherwise q increases
by one, and return to procedure 3.

(3) Cellular Grammatical Code
A genotype in this code is interpreted as a system which is composed of a

series connection of simple cellular automata. Each cellular automaton, Cq(q =
1, 2, · · · , �), is composed of four transition rules and an output timing. The inputs
to the cellular automata, the outputs from them, and their inside states are
represented by integers in a range of [1, 4]. The transition rules convert one
integer (∈ [1, 4]) into another one (∈ [1, 4]). Therefore, integers (∈ [1, 4]) are
propagated among the cellular automata. The transition rules have not only
their outputs but also information on a phenotypic locus and its allele, so that
each cellular automaton can determine a phenotypic locus and its allele at its
output timing. The output timing is also an integer (∈ [1, 8]), which represents
the number of the transitions. In this code, there are sequential interactions
among both the phenotypic loci and their alleles. This decoding procedure is
described below. Since the decoding is done through � iterations, the iteration
number is denoted by q = 1, 2, · · · �.
1. In the case of q = 1, the initial input is given to the first cellular automaton

C1. In the case of 2 ≤ q ≤ �, the output of the (q − 1)-th cellular automaton
is give to the q-th one as its input.

2. When the input value to the cellular automaton is iq ∈ [1, 4], the iq-th
transition rule is activated. The state of the cell moves from iq to s1 ∈ [1, 4]
according to the iq-th transition rule. This state transition is repeated until
the number of times of the state transitions reaches the output timing ot.
After reaching ot, the current state of the cell sot ∈ [1, 4] becomes the input
value iq+1 = sot to the next cell Cq+1. Finally, one more the state transition
is done according to the sot-th transition rule, and the phenotypic locus and
its allele are determined as pot+1 ∈ [1, � − q], which represents one of the
labels of the unoccupied loci labeled as 1 to �− q, and its allele vot+1 ∈ [0, 1]
that the sot+1-th transition rule has, respectively.

3. In the case of q = �, the whole decoding process ends. Otherwise q increases
by one, and return to procedure 1.

1430 K. Ohnishi et al.

4 Experiments

4.1 Test Problems

We use three types of uniformly-scaled problems for investigating the GAs using
the grammatical codes. Those are (1) OneMax problem with � bits, (2) 4-bit trap
deceptive function with tightly linked m BBs [20], and (3) 4-bit trap deceptive
function with loosely linked m BBs. They are thereafter called OneMax-�, (m, 4)-
Trap-T, and (m, 4)-Trap-L, respectively.
(1) OneMax Problem with � Bits (OneMax-�)

This problem gives the number of ones in the phenotypes to their correspon-
ding genotypes as their fitness values.
(2) 4-bit Trap Deceptive Function with Tightly Linked m BBs ((m, 4)-Trap-T)

A BB in the phenotype consists of four bits, and each BB is close to one
another like (B1, B2, · · · , Bm), where Bq is the q-th BB. A fitness value of a
genotype is the sum of fitness values that m BBs give. A fitness value of each
BB is calculated in the same way. When the number of ones in a BB is u, the
fitness value of the BB, fBB(u), is given by

fBB(u) =
{

4 u = 4,
3 − u otherwise.

(3) 4-bit Trap Deceptive Function with Loosely Linked m BBs ((m, 4)-Trap-L)
A BB in the phenotype consists of four bits, and each BB is distant from one

another. Concretely, the q-th BB is denoted by (q, q+�/4, q+�/2, q+3�/4), where
q = 1, 2, · · · , �/4, �(= 4m) is the length of the phenotype, and each element in
that vector notation of the BB represents a phenotypic locus. A fitness value of
a BB is calculated in the same way as done in (m, 4)-Trap-T.

4.2 Genotype-Phenotype-Mapping Characteristics

First of all the experiments, the characteristics of genotype-phenotype mappings
of the three grammatical codes are examined. We observe two things: (1) how
many small perturbations in the genotypes change their phenotypes, which was
called locality in [21], and (2) how many small perturbations in the genotypes
change their fitness values when concrete optimization problems are assumed.
We use OneMax-32, (8, 4)-Trap-T, and (8, 4)-Trap-L as test problems. The ex-
perimental procedure is as follows:

1. A genotype is randomly generated, and then its phenotype is obtained by
the genotype-phenotype-mapping. The genotype and phenotype generated
are called original genotype and original phenotype, respectively. Also, the
fitness value of the original phenotype, which is called original fitness value,
is calculated.

2. A new genotype is obtained by modifying an allele at a certain locus in the
original genotype, and then its phenotype is obtained. Also, the fitness value
of the new phenotypes is calculated. The difference between the original and
the new genotypes is just one allele at the chosen locus.

Inducing Sequentiality Using Grammatical Genetic Codes 1431

3. A Hamming distance between the original and the new generated phenotypes
is calculated. Absolute value of the difference between two fitness values that
the original and the new phenotypes have is calculated.

4. Iterating the procedure 2 to 3 until all the genotypes that are adjacent to the
original genotype are generated and compared with the original genotype.

5. Iterating the procedure 1 to 4 until 100 original genotypes are generated and
compared with all the genotypes adjacent to them.

The experimental results are shown in Fig. 1, which represents two things:
(1) the averaged Hamming distance between the original phenotype and each of
the other phenotypes corresponding to all the genotypes adjacent to the original
one, and (2) the averaged difference between the original fitness value and each
of the other fitness ones that all the genotypes adjacent to the original one have.
The two kinds of averaged values were calculated for each genotypic locus.

Figure 1(a)-1(c) show that small perturbations on the left parts of the geno-
types in the three grammatical codes caused bigger changes in their phenotypes
than small perturbation on the right parts of them.

However, the changes in the fitness values that result from the changes in the
phenotypes were not always like the ones in the phenotypes. When we assumed
OneMax-32 and (8, 4)-Trap-T, the changes in the fitness values were almost flat
over all the genotypic loci for almost all the grammatical codes used (Figure 1(d)-
1(i)). When we assumed (8, 4)-Trap-L, the more left the genotypic loci were, the
bigger the changes in the fitness values became (Figure 1(j)-1(h)). In this case,
we could say that uniformly-scaled problems became non-uniformly-scaled ones
at least in the local regions of their genotype spaces.

4.3 Genetic Algorithm

The results shown in the previous section suggest that the three grammatical co-
des have genotype-phenotype-mappings that give low correspondences between
their genotypic and phenotypic neighborhoods. In addition, fitness landscapes
on their genotypic spaces have multi-modalities because the three codes are
redundant genetic representations. As a result, the fitness landscapes on their
genotypic spaces should be highly rugged ones. We now briefly describe the
GA used in this paper to investigate the grammatical genetic codes to induce
sequentiality.

Minimal generation gap model (MGG) [22] is used as a generation gap mo-
del. This model literally minimizes a generation gap. Since it seems that fitness
landscapes on the grammatical genetic codes are highly rugged, this generation
gap model should be better than ones which change GA populations drastically
at generation gaps. We will thereafter regard generating genotypes amounting a
population size as one generation.

We use a one-point crossover operator from the viewpoint of not exploiting
genotypes but minimizing the disruption of good genetic materials in the left
part of the genotype. Since there are sequential interactions among the genotypic
genes from left to right, the genes in the left part of the genotype should be kept
from their disruption. A one-point crossover operator should be suitable from
this point. Mutation operator is not used.

1432 K. Ohnishi et al.

0

1

2

3

4

5

6

7

10 20 30 40 50 60

av
er

ag
ed

 H
am

m
in

g
di

st
an

ce
be

tw
ee

n
tw

o
ph

en
ot

yp
es

 [0
:3

2]

genotypic locus [1:64]

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90

av
er

ag
ed

 H
am

m
in

g
di

st
an

ce
be

tw
ee

n
tw

o
ph

en
ot

yp
es

 [0
:3

2]

genotypic locus [1:98]

0

1

2

3

4

5

6

50 100 150 200 250 300 350 400

av
er

ag
ed

 H
am

m
in

g
di

st
an

ce
be

tw
ee

n
tw

o
ph

en
ot

yp
es

 [0
:3

2]

genotypic locus [1:417]

(a) (b) (c)

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:8

]

genotypic locus [1:64]

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:8

]

genotypic locus [1:98]

0

0.1

0.2

0.3

0.4

50 100 150 200 250 300 350 400

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

nt
w

o
fit

ne
ss

 v
al

ue
s

[0
:8

]

genotypic locus [1:417]

(g) (h) (i)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:8

]

genotypic locus [1:64]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60 70 80 90

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:8

]

genotypic locus [1:98]

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300 350 400

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:8

]

genotypic locus [1:417]

(j) (k) (l)

GAuGE Complex Cellular

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:3

2]

genotypic locus [1:98]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200 250 300 350 400

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:3

2]

genotypic locus [1:417]

(d) (e) (f)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40 50 60

av
er

ag
ed

 d
iff

er
en

ce
be

tw
ee

n
tw

o
fit

ne
ss

 v
al

ue
s

[0
:3

2]

genotypic locus [1:64]

Fig. 1. Genotype-phenotype-mapping characteristics of the three grammatical codes.
Labels of GAuGE, Complex, and Cellular represent the results for the GAuGE, the
complex, and the cellular grammatical codes, respectively. The sub-figures (a)(b)(c)
represent the averaged Hamming distance between the original phenotype and each of
the other phenotypes corresponding to all the genotypes adjacent to the 100 original
ones. The other sub-figures from (d) to (l) represent the averaged difference between
the original fitness value and each of the other fitness ones that all the genotypes
adjacent to the 100 original ones have. The sub-figures (d)(e)(f), (g)(h)(i), and (j)(k)(l)
are for OneMax-32, (8, 4)-Trap-T8, and (8, 4)-Trap-L, respectively. Those two kinds of
averaged values (solid lines) were calculated for each genotypic locus. When there
are K genotypic alleles at a certain locus, K − 1 genotypes adjacent to an original
genotype are obtained by modifying the allele at the locus in the original one. Then
averaged value over K − 1 comparisons is obtained for the locus. The same procedure
is applied to 100 original genotypes, so that the 100 averaged values are obtained. The
final averaged value for the locus is obtained by averaging the 100 values. Standard
deviations of the observed values are also plotted in all the sub-figures (dash lines).

Inducing Sequentiality Using Grammatical Genetic Codes 1433

4.4 Inducing Sequentiality

We examine if sequentiality is actually induced in uniformly-scaled problems by
the GAs using the grammatical genetic codes. A GA using an identical map bet-
ween a genotype and a phenotype spaces, which is called standard GA thereafter,
is also used to compare with them. The population size is appropriately sized
so that 95 out of 100 independent runs converge to the optimum. We observe
convergence of both phenotypic alleles and loci. As for phenotypic alleles, we
obtain averaged generations at which proportion of correct BBs or bits in the
GA population are over 0.9. Since all the BBs or bits do not always converge
in a fixed order, the generations at which the BBs or bits converged are sorted
in ascending order and the sorted generations at the same order are averaged.
As for phenotypic loci, we obtain averaged proportion of loci into which a set of
genotypic genes at some order from the most left (1st) set in the GA population
are mapped the most frequently. Those two averaged values are calculated using
data of success runs out of 100. OneMax-80, (8, 4)-Trap-T, and (8, 4)-Trap-L are
used here. The experimental results for the convergence of the phenotypic alleles
and loci are shown in Table 1 and Fig. 2, respectively.

Table 1. Averaged generations over success runs out of 100 at which proportion of
correct BBs or bits in the GA population were over 0.9. As for OneMax-80, the gene-
rations for 1st, 10th, 20th, 30th, 40th, 55th, 70th, and 80th converged bits are shown.
As for (8, 4)-Trap-*, the generations for all the converged BBs are shown.

OneMax-80 pop. size 1st 10th 20th 30th 40th 55th 70th 80th
Standard GA 500 10.53 13.64 15.41 17.26 19.36 23.45 29.66 39.33

GAuGE 500 14.44 18.03 19.78 21.10 22.46 24.61 27.67 35.02
Complex 500 14.61 18.39 20.17 21.49 22.89 25.13 28.61 36.65
Cellular 2000 22.20 28.30 31.68 34.44 37.34 42.29 49.75 66.54

(8, 4)-Trap-T pop. size 1st 2nd 3rd 4th 5th 6th 7th 8th
Standard GA 500 15.49 16.86 18.22 19.23 20.47 21.74 23.30 25.36

GAuGE 22000 33.70 35.44 36.54 38.09 39.29 42.08 44.65 48.94
Complex 22000 32.52 34.26 35.57 37.15 38.89 40.61 43.37 47.65
Cellular 50000 38.64 40.96 43.13 45.24 48.09 51.85 56.31 70.09

(8, 4)-Trap-L pop. size 1st 2nd 3rd 4th 5th 6th 7th 8th
Standard GA 540000 39.26 40.98 42.65 43.94 45.59 48.03 51.41 57.94

GAuGE 32000 34.74 36.26 37.48 38.58 39.88 41.64 44.25 47.76
Complex 32000 34.08 35.89 37.26 38.30 39.46 41.15 43.58 46.90
Cellular 80000 38.84 41.08 43.29 45.03 46.97 50.18 54.52 63.73

Table 1 shows that the GAs using the grammatical code can induce sequen-
tiality. However, since the standard GA also induced sequentiality, we can not
conclude that the grammatical genetic code is the only factor to induce sequen-
tiality. It is suggested that the genetic operators used, especially the generation
gap model, could also be a possible factor.

1434 K. Ohnishi et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

generation

1st 10th
20th 30th
40th 50th
60th
80th

70th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

generation

1st 10th
20th 30th
40th 50th
60th
80th

70th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

generation

1st 10th
20th 30th
40th 50th
60th
80th

70th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

generation

1st 4th
8th 12th

16th 20th
24th
32th

28th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

generation

1st 4th
8th 12th

16th 20th
24th
32th

28th

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140
generation

1st 4th
8th 12th

16th 20th
24th
32th

28th

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

generation

1st 4th
8th 12th

16th 20th
24th
32th

28th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 th
e

po
si

tio
n

oc
cu

rin
g

th
e

m
os

t f
re

qu
en

tly

generation

1st 4th
8th 12th

16th 20th
24th
32th

28th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140
pr

op
or

tio
n

of
 th

e
po

si
tio

n
oc

cu
rin

g
th

e
m

os
t f

re
qu

en
tly

generation

1st 4th
8th 12th

16th 20th
24th
32th

28th

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

GAuGE Complex Cellular

Fig. 2. Averaged proportion of loci into which the q-th set of genotypic genes from
the most left (1st) set are mapped the most frequently over success runs out of 100.
Labels of “GAuGE”, “Complex”, and “Cellular” mean the results for the GAuGE,
the complex, and the cellular grammatical codes, respectively. As for OneMax-80 (the
sub-figures (a)(b)(c)), the proportions for the 1st, 10th, 20th, 30th, 40th, 50th, 60th,
70th, and 80th sets of genotypic genes are plotted. As for (8, 4)-Trap-T ((d)(e)(f)) and
(8, 4)-Trap-L ((g)(h)(i)), the proportions for the 1st, 4th, 8th, 12th, 16th, 20th, 24th,
28th, and 32th sets of genotypic genes are plotted. Also, the proportion of the genotypes
with the optimal fitness value in the GA population is plotted in every sub-figure (the
thickest solid line).

Figure 2 shows that the more left the genotypic genes are located in the
genotypes, the more frequently they are mapped into the same locus. It is sug-
gested that this fixations of the loci should be essential to induce sequentiality.
However, as especially in the GAs using the GAuGE and complex codes for
(8, 4)-Trap-T and (8, 4)-Trap-L, the degree of the fixations of the loci was low,
and a variety of genotypes resided together in the GA populations even when the
fitness values of all the genotypes almost converged. Considering the low degree
of the loci fixations, it could be thought that the big reliable population sizes
for (8, 4)-Trap-T and (8, 4)-Trap-L should result from the fact that the crossover
operator used was not able to mix the genotypes effectively due to the lack of
the mechanism to fix the loci properly.

4.5 Reliable Population Size

In the previous section, we verified that the GAs using the grammatical codes can
induce sequentiality. However, the scalability of the GAs has not been revealed.
Therefore, we examine population sizes with which the GAs using grammatical

Inducing Sequentiality Using Grammatical Genetic Codes 1435

codes can reliably find global optima for given optimization problems. The re-
liable population sizes are determined as minimal population ones with which
the GAs succeed in finding global optima for given optimization problems over
95 times out of 100 runs. The experimental results are shown in Table 2.

Table 2. The reliable population sizes for OneMax-40,60,80, (m, 4)-Trap-T (m =
4, 6, 8), and (m, 4)-Trap-L (m = 4, 6, 8). The reliable population size is determined as
a minimal population size with which each GA can find global optima for the given
optimization problems over 95 times out of 100 runs.

OneMax-� (m, 4)-Trap-T (m, 4)-Trap-L
40 bits 60 bits 80 bits 4 BBs 6 BBs 8 BBs 4 BBs 6 BBs 8 BBs

Standard GA 150 280 460 120 250 400 6000 50000 540000
GAuGE 140 280 420 1300 6000 20000 1400 7000 30000
Complex 140 300 460 1400 5000 18000 1000 5000 26000
Cellular 380 900 1700 1800 11000 48000 1400 12000 76000

From Table 2, we can predict that the reliable population sizes of the GAs
using the three grammatical genetic codes for (m, 4)-Trap-T and (m, 4)-Trap-L
exponentially increase with problem size. The function evaluations that need to
find the global optima can be predicted to increase exponentially as well, though
those data are not shown in this paper. In terms of scalability, the GAs using the
three grammatical codes are impractical for GA-hard uniformly-scaled problems.
However, we should examine the performances of them when smaller cardinal
numbers are used for representing their genotypic genes in the further work.

5 Summary and Conclusion

We empirically examined grammatical genetic codes as one of the factors that
induce sequentiality in uniformly-scaled problems. The factors to induce se-
quentiality are manifold, such as optimization problems, genotype-phenotype-
mapping, population size, and genetic operators. This work focused on genotype-
phenotype-mapping, and empirically observed their effects on sequentiality. The
observed effects are: (1) the grammatical codes get uniformly-scaled problems to
be non-uniformly-scaled ones, and help GAs induce sequentiality, (2) the gene-
tic operators used help GAs induce sequentiality, and (3) impractical population
sizes are needed for a successful search with sequentiality.

The results suggest that while the grammatical codes help GAs induce se-
quentiality together with the genetic operators, they are not enough to cause
strong fixations of the genotypic genes for a recombination operator to mix
the genotypes effectively, so that the GAs using the grammatical codes scale-
up exponentially with problem size. On the other hand, selectomutative GAs
might be more economical for grammatical codes in which genotypic genes are
represented by integers than selectorecombinative GAs. If we are waiting for

1436 K. Ohnishi et al.

discovery of good genes block one after another by mutation, large population
size might not really be needed. Therefore, by using mutation, we can do away
with smaller populations, but might require longer time—in terms of number of
generations—than in the case of crossover.

Our results are also useful in isolating some of the features of grammatical
evolution (GE). One of the attributes for the success of GE might be a ba-
lanced mixture of inherent interactions among components of a program and
interactions induced by grammar. Furthermore, unlike integer codes, the use of
binary-coded genotypic genes in GE likely bring diversity and flexibility into
search. Finally, the selectomutative part of GE might also be playing a more
important role than it appears on a first glance.

Acknowledgments. This work was sponsored by the Air Force Office of Scien-
tific Research, Air Force Materiel Command, USAF, under grant F49620-03-
1-0129, and by the Technology Research Center (TRECC), a program of the
University of Illinois at Urbana-Champaign, administered by the National Cen-
ter for Supercomputing Applications (NCSA) and funded by the Office of Naval
Research under grant N00014-01-1-0175. The US Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Air Force Office of Scientific
Research, or the U.S. Government.

References

1. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of the
5th International Conference on Genetic Algorithms (ICGA-93). (1993) 38–45

2. Goldberg, D.E.: The race, the hurdle, and the sweet spot: Lessons from genetic
algorithms for the automation of design innovation and creativity. Evolutionary
Design by Computers (1999) 105–118

3. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Ge-
netic Algorithms. Kluwer Academic Publishers, Norwell, MA (2002)

4. Harik, G.R., Goldberg, D.E.: Learning linkage. Foundations of Genetic Algorithms
4 (1996) 247–262

5. Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded dif-
ficulty using genetic algorithms. PhD thesis, University of Michigan, Ann Arbor
(1997) Also IlliGAL Report No. 97005.

6. Chen, Y.P., Goldberg, D.E.: Introducing start expression genes to the linkage learn-
ing genetic algorithm. In: Proceedings of Parallel Problem Solving from Nature VII.
(2002) 351–360

7. Chen, Y.P., Goldberg, D.E.: Convergence time for the linkage learning genetic
algorithm. IlliGAL Report No. 2003025, Illinois Genetic Algorithms Lab., Univ. of
Illinois, Urbana, IL (2003)

8. Ryan, C., Nicolau, M., O’Neill, M.: Genetic algorithms using grammatical evolu-
tion. In: Proceedings of the Fifth European Conference on Genetic Programming
(EuroGP 2002). (2002) 278–287

Inducing Sequentiality Using Grammatical Genetic Codes 1437

9. Nicolau, M., Ryan, C.: How functional dependency adapts to salience hierarchy in
the GAuGE system. In: Proceedings of the Sixth European Conference on Genetic
Programming (EuroGP 2003). (2003) 153–163

10. Ryan, C., Collins, J., O’Neill, M.: Grammatical evolution: Evolving programs for an
arbitrary language. In: Proceedings of the First European Conference on Genetic
Programming. (1998) 83–96

11. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary
Computation 5 (2001) 349–358

12. Rothlauf, F., Goldberg, D.E.: Representations for Genetic and Evolutionary Algo-
rithms. Physica-Verg, Heidelberg, New York (2002)

13. Whitley, D., Rana, S., Heckendorn, R.: Representation issues in neighborhood se-
arch and evolutionary algorithms. In: Genetic Algorithms and Evolution Strategy
in Engineering and Computer Science. John Wiley & Sons Ltd, West Sussex, Eng-
land (1997) 39–58

14. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3 (1989) 493–530

15. Anderson, P.G.: Ordered greed. In: Proceedings of Third International ICSC Sym-
posium on Soft Computing. (1999)

16. Anderson, P.G.: Ordered greed, ii: Graph coloring. In: Proceedings of the Interna-
tinal NAISO Congress on Information science innovations (ISI2001). (2001)

17. Kitano, H.: Designing neural networks using genetic algorithms with graph gene-
ration system. Complex Systems 4 (1990) 461–476

18. Goldberg, D.E., Lingle, Jr., R.: Alleles, loci, and the traveling salesman problem.
In: Proceedings of an International Conference on Genetic Algorithms and Their
Applications. (1985) 154–159

19. Nicolau, M., Ryan, C.: LINKGAUGE: Tackling hard deceptive problems with a new
linkage learning genetic algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2002 (GECCO 2002). (2002) 488–494

20. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. Foundations of
Genetic Algorithms 2 (1993) 93–108

21. Rothlauf, F.: Towards a Theory of Representations for Genetic and Evolutionary
Algorithms— Development of Basic Concepts and their Application to Binary and
Tree Representations. Unpublished doctoral dissertation, University of Illinois at
Urbana-Champaign, Urbana, IL (2001)

22. Satoh, H., Yamamura, M., Kobayashi, S.: Minimal generation gap model for GAs
considering both exploration and expolation. In: Proceedings of the International
Conference on Fuzzy Systems, Neural Networks and Soft Computing (Iizuka’96).
(1996) 494–497

	Introduction
	Related Studies
	Grammatical Codes
	Experiments
	Test Problems
	Genotype-Phenotype-Mapping Characteristics
	Genetic Algorithm
	Inducing Sequentiality
	Reliable Population Size

	Summary and Conclusion

